DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Fishbone instability and transport of energetic particles

Guillaume Brochard^{1,2}

Supervised by Dr. **R.Dumont**¹, Dr. **H.Lütjens**², Dr. **X.Garbet**¹ Acknowledgment to Dr. **T.Nicolas**², Dr. **F.Orain**²

- 1) Institut de Recherche sur la Fusion Magnétique, CEA Cadarache
- 2) Centre de Physique Théorique, Ecole Polytechnique, Paris

Motivation

Kinetic-MHD instabilities induce transport of energetic particles (EP) experimentally ([3],[4])

Energetic particles are needed to sustain the plasma heat

Nonlinear simulations needed to study transport ([5],[6],[7])

[1]: Chen et al. 1984[2] White et al. 1989[3] McGuire et al. 1983[4]Nave et al. 1991

[5] Fu et al. 2005 [5] Vlad et al. 2013 [6] Pei et al. 2017

Kinetic-MHD resonant processes

Resonant condition for trapped particles $\omega = \omega_d(E,\mu,P_{arphi})$ Resonant condition for passing particles

$\omega = \omega_d(E,\mu,P_{arphi}) + (1-q)\omega_b(E,\mu,P_{arphi})$

- Resonant processes possible at high energy with precessionnal and bounce frequencies
- Resonances lie on planes in phase space
- At lower energy, the trapped particles are mainly contributing

Resonant curves at fixed P_{φ}

Outline

➤I) Description and linear verification of the hybrid nonlinear code XTOR-K

 \succ II) Determination of the fishbone $β_h$ thresholds for the ITER 15 MA case

➤III) Nonlinear study of the fishbone-induced EP transport for a circular ITER-like equilibrium

Kinetic-MHD hybrid code XTOR-K

- XTOR-K able to describe self-consistently kinetic-MHD modes during their nonlinear phase
- Nonlinear simulations are mandatory to study the EP transport
- Needs to be verified against linear theory

[1] H. Lütjens et al, JCP 2012

[2] D. Leblond, PhD thesis 2013

XTOR-K Newton-Krylov/Picard algorithm

- Full f hybrid codes require a fluid and a kinetic time step
- Kinetic time step needs to be at least ten times smaller than the ion gyration time
- Algorithm optimized to do few kinetic Picard iterations
- ➤ Scheme computable in acceptable time for 10⁸-10⁹ macro-particles thanks to a massive parallelization of the particle advance

Kinetic-MHD linear theory

[1] Chen et al, PRL 1983

[2] Coppi et al, PFB 1990

[3] White et al, PFB 1990

[4] Porcelli et al, POP 1994

[5] Brochard et al, JPCS 2018

Kinetic-MHD energy principle

$$\delta I = \delta W_{MHD} + \delta W_{K}$$

Instability kinetic energy

MHD potential energy

EP potential energy

$$\delta W_K = -\frac{1}{2} \int d^3 \mathbf{x} d^3 \mathbf{v} \ \boldsymbol{\xi}^* \cdot \nabla \cdot (\mathbf{v} \otimes \mathbf{v} \tilde{f}_h)$$

MHD displacement

Perturbed EP distribution function

Vlasov equation

$$\partial_t \tilde{f}_h - \{\tilde{h}, F_{eq,h}\} - \{H_{eq}, \tilde{f}_h\} = 0$$

Equilibrium and perturbed hamiltonians

$$H_{eq} = \frac{1}{2}m\big[v_{\parallel}^2 + \mu B\big]$$

$$\tilde{h} = Ze [\phi - v_{\parallel} A_{\parallel}]$$

Angle-action formalism

Conjugate set of angle-action variables

$$\dot{oldsymbol{lpha}} = rac{\partial H_{eq}(\mathbf{J})}{\partial \mathbf{J}} = oldsymbol{\Omega}$$

$$\dot{\mathbf{J}} = -\frac{\partial H_{eq}(\mathbf{J})}{\partial \boldsymbol{\alpha}} = 0$$

Coordinates linked to the charateristic motion of charged particles in tokamaks

- $\succ (\alpha_1,J_1,\Omega_1)$ describe gyration motion
- \triangleright (α_2,J_2,Ω_2) describe bounce motion
- \triangleright $(\alpha_3, J_3, \Omega_3)$ describe precessional motion

Fourier transform in angle-action coordinates

$$\tilde{f}_h = \sum_{\mathbf{n}} \tilde{f}_{h,\mathbf{n}\omega}(\mathbf{J}) e^{i(\mathbf{n}\cdot\boldsymbol{\alpha} - \omega t)}$$

Resonant Vlasov solution

$$f_{h,\mathbf{n}\omega} = -\frac{\mathbf{n} \cdot \partial F_{eq}(\mathbf{J})/\partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \tilde{h}_{\mathbf{n}\omega}$$

> Angle-action is the natural set of variables to describe wave-particle resonance

Computation of the kinetic term

$$\lambda_K(\Omega) = \int dP_{\varphi} d\mu \int_0^{E_{\alpha}} \frac{Q(P_{\varphi}, \mu, E)}{(v - v_+)(v - v_-)} dE$$

$$F_{eq,SD} = \beta \ n_h(r) \frac{\theta(v_\alpha - v)}{v^3 + v_c^3(r)}$$

$$C\delta W_K = \lambda_{K,int} + \lambda_{K,res}(\Omega)$$

- Q computed in the thin orbit width limit on circular flux surfaces
- Isotropic Slowing-Down distribution considered
- $> v_{\pm}(P_{\varphi}, \mu, \Omega) \in \mathbb{C}$, poles are not unique due to passing particles
- Resonant integral can be treated analytically in specific situations

Non-perturbative kinetic dispersion relation

Resistive contribution

$$I_R(\Omega) = \frac{8\Gamma\left(\frac{\Lambda^{3/2} + 5}{4}\right)}{\Lambda^{9/4}\Gamma\left(\frac{\Lambda^{3/2} - 1}{4}\right)} \qquad \Lambda = -i\Omega^* \tau_A (S/s_0^2)^{1/3}$$

$$\Lambda = -i\Omega^* \tau_A (S/s_0^2)^{1/3}$$

Bulk MHD contribution

Computed for specific equilibria through the combined codes CHEASE / XTOR-2F

$$\mathcal{D}(\Omega, n_{h,0}) = \Omega I_r(\Omega) - i[\gamma_{MHD} + n_{h,0}\lambda_K(\Omega)] = 0$$

Specificities of the linear model

- Kinetic term takes into account both trapped and passing particles contributions
- Non-resonant kinetic interchange term kept in the computation
- Passing particles contribution is not negligeable

Thin orbit width assumption correct up to E = 1MeV

- The linear model use a thin orbit width approximation
- For energies lower than 1 MeV, linear model particle frequencies are correct
- Linear verification possible for particle energy below 1 MeV

Linear model limited at high energies

- > At high energies (3.5MeV), thin orbit width approximation breaks down
- Linear verification cannot be performed at high energies

Constant MHD contribution assumption valid at 1MeV

- The MHD bulk contribution can only be constant for all $n_{h,0}$ if and only if the metric is weakly affected by EP, with $\beta_{p,h} << \beta_{p,tot}$
- ➤ For intermediate energy EP (1MeV), the metric is weakly affected
- > EP at peak energy of 1 MeV suitable for linear verification

Linear model limited at low energies

- ➤ For low energy EP (100 keV), high density are required to trigger the fishbone instability, which modifies the metric significantly
- $\succ \delta W_{MHD}$ is then significantly modified as $n_{h,0}$ is increased
- Linear verification cannot be performed at low energies

XTOR-K verified by Linear theory

- Linear theory agrees reasonably well with XTOR-K
- Discrepancies arise at higher EP density
- ➤ At these densities, differences between XTOR-K and the linear model are enlarged, which explains discrepancies

Matching phase-space resonant zones

- Similar zones of precessionnal resonance are found with nonlinear simulations with XTOR-K
- Energy exchange noisy because the end of the linear phase is only a couple of kink rotation periods
- Discrepancies in phase space positions can be due to the thin orbit width assumption

Outline

➤I) Description and linear verification of the hybrid nonlinear code XTOR-K

 \succ II) Determination of the fishbone $β_h$ thresholds for the ITER 15 MA case

➤III) Nonlinear study of the fishbone-induced EP transport for a circular ITER-like equilibrium

Linear simulation of the ITER 15 MA case with XTOR-K

Up-down symmetric geometry

Flat bulk density profile

- Parametric study of the ITER 15 MA case
- Realistic geometry and profiles similar to those from integrated modelling codes

Flat q profile

Slowing-Down distribution

$$> n_{i0} = 10^{20} m^{-3}$$

$$T_{i0} = T_{e0} = 23 \text{ keV}$$

Peaked EP density profile

$$n_{\alpha}(r) = n_{\alpha,0}(1 - r^2)^6$$

ITER 15 MA could be fishbone-unstable

- For $q_0 = 0.95, 0.9$, threshold for the fishbone instability is around p_h / p_{tot} = 5-8%
- ➤ ITER is unstable against fishbone instability for specific equilibria
- Differences with [1] can be due to different EP density profiles and q profiles
- > Several equilibria need to be tested to complete this study, with different q_0

[1] G. Fu et al, POP 2006

Outline

➤I) Description and linear verification of the hybrid nonlinear code XTOR-K

 \succ II) Determination of the fishbone $β_h$ thresholds for the ITER 15 MA case

➤III) Nonlinear study of the fishbone-induced EP transport for a circular ITER-like equilibrium

Nonlinear simulation of the fishbone instability

Time evolution of the kinetic energy

- A first non-linear simulation has been performed for a circular equilibrium, peak energy at 1 MeV
- Fishbone oscillations are observed before reconnection due to the kink instability
- Strong chirping is associated with the fishbone oscillations, as well as mode saturation
- Instability rotation goes to zero in the kink phase

Evidences for fishbone oscillations

Saturation

Typical evolution of a resonant particle

Trajectory in the poloidal plane

Variation of the canonical toroidal momentum

Variation of energy

Variation of the perturbed invariant

Interaction of a resonant particle with the kinetic-MHD mode

- Resonant particles move radially outward
- Transport induced by particle mode detrapping, due to waveparticle detuning
- Relationship between detrapping and chirping to be investigated

Resonant EP density profile flattens

Significant radial transport of resonant EP

➤ In resonant regions, transport of EP is substancial (50%)

Resonant region are very dependent of the imposed EP distribution

Weak transport of all particles

- > Overall EP transport in core plasma around 5% in the fishbone phase
- ➤ EP are transported to q=1
- > Fast mode chirping may prevent to transport large amount of EP

What transport for more ITER realistic equilibria?

- ➤ The magnitude of the EP transport is directly related to position of resonances onto EP distribution
- ➤ For more ITER realistic equilibria, precessional resonance spans wider portions of the EP distribution
- Nonlinear simulation with more realistic ITER equilibrium needed

Conclusion

Nonlinear hybrid code XTOR-K verified against analytical theory

➤ ITER found to be unstable against fishbone instability for specific equilibria

➤ Fishbone induced transport of EP in nonlinear phase found to be weak for a specific equilibrium

Perspectives

 \triangleright Linear analysis of fishbone thresholds on ITER to be extended for $q_0 > 1$

- More complete Kinetic Poincaré diagnostics are implemented to understand the nonlinear interplay between mode chirping and EP transport
- Nonlinear results need to be generalized for more ITER realistic equilibria, closer to the fishbone threshold